C2	0.1203 (2)	0.1948 (2) 0.81824 (9)	0.0329 (4)	
C3	0.2730 (2)	0.2522 (3) 0.81227 (11) 0.0438 (5)	
C4	0.3746 (3)	0.2436 (3) 0.87460 (14) 0.0559 (6)	
C5	0.3206 (3)	0.1802 (3) 0.94295 (12) 0.0542 (6)	
C6	0.1690 (3)	0.1259 (2) 0.94869 (10) 0.0497 (5)	
C7	0.0633 (3)	0.1303 (2) 0.88655 (9)	0.0383 (4)	
C8	-0.1016 (3)	0.0665 (3) 0.89237 (13) 0.0505 (5)	
C9	-0.1112 (2)	0.0771 (2) 0.56451 (10) 0.0344 (4)	
C10	-0.0462 (3)	0.1711 (3) 0.49793 (11) 0.0436 (5)	
C11	-0.2299 (2)	0.2700 (2) 0.65445 (10) 0.0352 (4)	
C12	-0.3668 (3)	0.1924 (4) 0.6958 (2)	0.0578 (6)	
Table 4. Selected geometric parameters (Å, °) for DETTU					
S-Cl		1.702 (2)	C3C4	1.385 (3)	
N1-C1		1.358 (2)	C4—C5	1.384 (4)	
N1-C2		1.432 (2)	C5-C6	1.363 (4)	

N1-C2	1.432 (2)	C5-C6	1.363 (4)
N2—C1	1.344 (2)	C6—C7	1.403 (3)
N2-C11	1.467 (2)	C7—C8	1.496 (3)
N2C9	1.470 (2)	C9-C10	1.511 (3)
C2—C3	1.381 (3)	C11—C12	1.512 (3)
C2—C7	1.395 (2)		
C1—N1—C2	126.24 (14)	C2-C3C4	120.0 (2)
C1—N2—C11	123.43 (13)	C5-C4-C3	119.4 (2)
C1-N2C9	121.51 (14)	C6-C5-C4	120.2 (2)
C11—N2—C9	115.02 (13)	C5—C6—C7	122.1 (2)
N2-C1-N1	115.63 (14)	C2—C7—C6	116.7 (2)
N2—C1—S	123.07 (12)	C2-C7-C8	121.3 (2)
NI-CI-S	121.30 (12)	C6C7C8	121.9 (2)
C3—C2—C7	121.6 (2)	N2-C9-C10	112.69 (15
C3-C2-N1	120.4 (2)	N2-C11-C12	113.3 (2)
C7—C2—N1	117.9 (2)		

The two title structures were solved by direct methods and refined by a full-matrix least-squares technique. All H atoms in both structures were located from difference maps and refined isotropically.

For both compounds, data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structures: SHELXS86 (Sheldrick, 1990a); program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); molecular graphics: SHELXTL/PC (Sheldrick, 1990b); software used to prepare material for publication: SHELXL93. Geometric calculations: PARST (Nardelli, 1983).

One of the authors (KS) thanks the Universiti Sains Malaysia for a Visiting Post Doctoral Research Fellowship.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: MU1206). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, O. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Nardelli, M. (1983). Comput. Chem. 7, 95–98.
- Ramadas, K., Srinivasan, N. & Janarthanan, N. (1993). Tetrahedron Lett. 34, 6447–6450.
- Ramnathan, A., Sivakumar, K., Subramanian, K., Janarthanan, N., Ramadas, K. & Fun, H.-K. (1995). Acta Cryst. C51, 2446-2450.
- Sarkis, G. Y. & Faisal, E. D. (1985). J. Heterocycl. Chem. 22, 137– 140.
- Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.

©1996 International Union of Crystallography Printed in Great Britain – all rights reserved Sheldrick, G. M. (1990b). SHELXTL/PC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1994). XSCANS Users Manual. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Taylor, R., Kennard, O. & Versichel, W. (1984). J. Am. Chem. Soc. 106, 244-248.

Acta Cryst. (1996). C52, 414-416

$\alpha\beta\beta\alpha$ -3,4-Dimethyl-2,5-bis(3,4,5-trimethoxyphenyl)tetrahydrofuran

Hoong-Kun Fun,^a Kandasamy Sivakumar,^a† Boon-Chuan Yip,^a Abdul Hamid Othman^b and Ikram M. Said^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Chemistry, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia. E-mail: hkfun@pop. jaring.my

(Received 11 July 1995; accepted 30 August 1995)

Abstract

The crystal structure determination of the title compound, $C_{24}H_{32}O_7$, a second isomer of the natural 2,5bisaryltetrahydrofuran lignans, reveals that the molecule adopts an $\alpha\beta\beta\alpha$ configuration. The tetrahydrofuran ring is in an intermediate conformation between half-chair and envelope.

Comment

There are ten possible stereoisomers for natural 2,5bisaryltetrahydrofuran lignans, (I), consisting of four diastereomeric pairs and two meso forms (Biftu & Stevenson, 1987). Although these isomers are found in nature, only the crystal structure of (-)-grandisin, an $\alpha\beta\alpha\beta$ isomer, has been reported (Saad, Soepadmo, Fang, McLaughlin & Fanwick, 1991). We have now determined the crystal structure of one of the meso isomers, (II), a compound isolated from the roots of Polyalthia bullata (Annonaceae), a medicinal plant of Malaysia used for various ailments (Burkhill, 1966). The chemical structure was verified by its melting point, NMR and mass spectral data, which are similar to those of a compound isolated earlier from Aristolochia birotris (Conserva, Da Silva & Filho, 1990) and also to those of the synthetic compound (Biftu, Hazra & Stevenson, 1979).

[†] On leave from: Department of Physics, Anna University, Madras 600 025, India.

The title compound, (II), has been found to have the $\alpha\beta\beta\alpha$ configuration (Fig. 1). Bond lengths for the trimethoxyphenyl groups are comparable with those observed in (-)-grandisin. The C—O bond lengths [C7—O4 1.426 (2), C10—O4 1.431 (2) Å] of the furan ring are also in good agreement with those of (-)-grandisin, whereas the ring C—C bond lengths are slightly longer. Two of the three methoxy groups attached to each phenyl ring (attached to the *meta* positions) lie close to the ring plane whereas the methyl C atom of the *para* substituent is well away from that plane. The dihedral angle between the planes of the two phenyl rings is 139.25 (6)°.

Fig. 1. ORTEPII (Johnson, 1976) plot of the title molecule with the numbering scheme, showing 50% probability displacement ellipsoids.

In (-)-grandisin the tetrahydrofuran five-membered ring adopts a half-chair conformation with a twofold axis passing through the O atom, whereas in the title compound an intermediate conformation between a halfchair and envelope is observed [asymmetry parameters $\Delta S(O4) = 0.039(1), \Delta 2(C8) = 0.052(1)$ (Nardelli, 1983*a*)].

There are several possible C—H···O hydrogen bonds in this structure, of which the most significant are: C18···O6ⁱ 3.355 (3) Å, C18—H18A···O6ⁱ 143 (2)°; C19···O5ⁱⁱ 3.446 (3) Å, C19—H19A···O5ⁱⁱ 145 (2)°; C19···O3ⁱⁱⁱ 3.258 (4) Å, C19—H19B···O3ⁱⁱⁱ 128 (2)°; symmetry codes: (i) $x, \frac{1}{2} - y, z - \frac{1}{2}$; (ii) $\frac{3}{2} - x, -y, z - \frac{1}{2}$; (iii) $\frac{3}{2} - x, -y, z - \frac{1}{2}$; (iii) $\frac{3}{2} - x, y - \frac{1}{2}, z$.

Experimental

The title compound [CA Reg. No. 50394-05-3] was obtained by column chromatography using silica gel (230–400 mesh) and eluted with hexane–ethyl acetate (4:1), forming colourless crystals on standing.

Crystal data

$C_{24}H_{32}O_7$	Mo $K\alpha$ radiation
$M_r = 432.50$	$\lambda = 0.71073 \text{ Å}$
Orthorhombic	Cell parameters from 29
Pbca	reflections
a = 20.660 (2)Å	$\theta = 7 - 12.5^{\circ}$
$b = 7.706(1) \text{ Å}_{1}$	$\mu = 0.090 \text{ mm}^{-1}$
c = 29.217 (4) Å	T = 293 (2) K
$V = 4651.5 (10) \text{ Å}^3$	Transparent block
Z = 8	$0.60 \times 0.56 \times 0.38$ mm
$D_x = 1.235 \text{ Mg m}^{-3}$	Colourless

 $R_{\rm int} = 0.0303$

 $\theta_{\rm max} = 27.49^{\circ}$

 $\begin{array}{l} h = -1 \rightarrow 26 \\ k = -1 \rightarrow 10 \end{array}$

 $l = -1 \rightarrow 37$

3 standard reflections

reflections

monitored every 97

intensity decay: none

Data collection Siemens P4 four-circle

diffractometer $\theta/2\theta$ scans Absorption correction: none 6550 measured reflections 5260 independent reflections 3238 observed reflections

 $[I > 2\sigma(I)]$

Refinement

01 02

03

04

05 06

07

CI

C2 C3

C4

C5

C6 C7

C8

C9

C10 C11 C12

- Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.0470$ $wR(F^2) = 0.2237$ S = 0.9355244 reflections 408 parameters All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0998P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
- $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.22 \text{ e} \text{ Å}^{-3}$ Extinction correction: none Atomic scattering factors from *International Tables* for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

x	у	Ζ	U_{eq}
0.97104 (7)	0.2728 (2)	0.49732 (5)	0.0554 (4)
0.90239 (7)	0.2480 (2)	0.42064 (5)	0.0513 (4)
0.80746 (7)	0.0150 (2)	0.41128 (4)	0.0510 (4)
0.84441 (7)	-0.0991 (2)	0.61338 (4)	0.0475 (3)
0.77155 (7)	-0.1271 (2)	0.80590 (5)	0.0665 (5)
0.88882 (8)	-0.0079 (2)	0.82564 (4)	0.0584 (4)
0.98384 (7)	-0.0072 (3)	0.76424 (5)	0.0731 (5)
0.90635 (9)	0.0476 (2)	0.53462 (6)	0.0428 (4)
0.92302 (9)	0.1509 (2)	0.49740 (6)	0.0422 (4)
0.88859 (9)	0.1378 (2)	0.45646 (6)	0.0413 (4)
0.83773 (9)	0.0197 (2)	0.45280 (6)	0.0406 (4)
0.82086 (10)	-0.0821 (3)	0.49020 (6)	0.0421 (4)
0.85505 (9)	-0.0682 (2)	0.53106 (6)	0.0396 (4)
0.83544 (9)	-0.1827 (3)	0.57030 (6)	0.0411 (4)
0.87193 (10)	-0.3578 (2)	0.57405 (6)	0.0431 (4)
0.87468 (11)	-0.3883 (3)	0.62669 (6)	0.0472 (5)
0.83456 (10)	-0.2367 (3)	0.64553 (6)	0.0441 (4)
0.84990 (9)	-0.1757 (3)	0.69346 (6)	0.0433 (4)
0.80191 (10)	-0.1818(3)	0.72652 (6)	0.0457 (5

C13	0.81515 (10)	-0.1281 (3)	0.77101 (6)	0.0463 (5)
C14	0.87689 (10)	-0.0704 (3)	0.78221 (6)	0.0458 (4)
C15	0.92491 (10)	-0.0651 (3)	0.74900 (7)	0.0500 (5)
C16	0.91160 (11)	-0.1171 (3)	0.70461 (7)	0.0517 (5)
C17	1.00865 (12)	0.2936 (3)	0.53767 (9)	0.0576 (6)
C18	0.94625 (14)	0.1770 (4)	0.38825 (9)	0.0663 (7)
C19	0.75146 (15)	-0.0931 (4)	0.40725 (9)	0.0682 (7)
C20	0.8398 (2)	-0.4960 (3)	0.54555 (10)	0.0679 (7)
C21	0.8513 (3)	-0.5626 (4)	0.64410 (11)	0.0915 (11)
C22	0.70538 (12)	-0.1482 (5)	0.79541 (10)	0.0672 (7)
C23	0.9065 (2)	-0.1339 (5)	0.85823 (9)	0.0846 (9)
C24	1.03674 (13)	-0.0203 (5)	0.73362 (12)	0.0824 (9)

Table 2. Selected geometric parameters $(Å, \circ)$

	0	•	
01—C2	1.367 (2)	C3C4	1.394 (3)
O1—C17	1.421 (3)	C4—C5	1.390 (3)
O2—C3	1.377 (2)	C5—C6	1.391 (3)
O2—C18	1.420 (3)	C6C7	1.503 (2)
O3C4	1.365 (2)	C7—C8	1.549 (3)
O3C19	1.431 (3)	C8-C20	1.506 (3)
04C7	1.426 (2)	C8C9	1.557 (3)
O4C10	1.431 (2)	C9-C21	1.515 (3)
O5-C13	1.360 (2)	C9-C10	1.534 (3)
O5—C22	1.410 (3)	C10C11	1.511 (2)
O6C14	1.380 (2)	C11—C12	1.385 (3)
O6-C23	1.408 (3)	C11—C16	1.391 (3)
O7—C15	1.371 (2)	C12-C13	1.391 (3)
O7—C24	1.416 (3)	C13—C14	1.390 (3)
C1—C6	1.390 (3)	C14—C15	1.388 (3)
C1—C2	1.391 (3)	C15-C16	1.385 (3)
C2—C3	1.395 (3)		
C2-01-C17	118.2 (2)	C20-C8-C7	111.2 (2)
C3-02-C18	113.7 (2)	C20-C8-C9	117.1 (2)
C4O3C19	117.3 (2)	C7—C8—C9	102.65 (15)
C7O4C10	103.06 (14)	C21-C9-C10	112.5 (2)
C13-05-C22	118.6 (2)	C21—C9—C8	117.0 (2)
C14-06-C23	115.3 (2)	C10-C9-C8	102.70 (15)
C15-07-C24	117.2 (2)	O4-C10-C11	110.3 (2)
C6C1C2	119.9 (2)	O4C10C9	104.59 (14)
01—C2—C1	125.1 (2)	C11-C10-C9	117.1 (2)
O1-C2-C3	114.7 (2)	C12-C11-C16	120.2 (2)
C1-C2-C3	120.2 (2)	C12-C11-C10	119.1 (2)
O2-C3-C4	120.0 (2)	C16-C11-C10	120.7 (2)
O2-C3-C2	120.1 (2)	C11-C12-C13	120.0 (2)
C4—C3—C2	119.8 (2)	O5-C13-C14	115.4 (2)
O3-C4-C5	124.6 (2)	O5-C13-C12	124.9 (2)
O3C4C3	115.5 (2)	C14-C13C12	119.7 (2)
C5-C4-C3	119.8 (2)	O6-C14-C15	120.3 (2)
C4—C5—C6	120.3 (2)	O6-C14-C13	119.5 (2)
C1—C6—C5	120.1 (2)	C15-C14-C13	120.0 (2)
C1-C6-C7	121.7 (2)	07-C15-C16	125.1 (2)
C5-C6-C7	118.2 (2)	07—C15—C14	114.6 (2)
O4C7C6	111.9 (2)	C16C15C14	120.3 (2)
O4—C7—C8	105.54 (14)	C15-C16-C11	119.7 (2)
C6-C7-C8	115.8 (2)		

The structure was solved by direct methods and refined by the full-matrix least-squares method. All H atoms were located from difference Fourier maps and were refined isotropically.

Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC (Sheldrick, 1990). Software used to prepare material for publication: SHELXL93. Geometrical calculations: PARST (Nardelli, 1983b).

The authors would like to thank the Malaysian Government and the Universiti Sains Malaysia for research grant R&D No. 123-3417-2201. One of the authors (KS) thanks Universiti Sains Malaysia for a Visiting Postdoctoral Research Fellowship. Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: MU1215). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Biftu, T. & Stevenson, R. (1987). Phytother. Res. 1, 97-106.
- Biftu, T., Hazra, B. G. & Stevenson, R. (1979). J. Chem. Soc. Perkin Trans. 1, pp. 2276-2281.
- Burkhill, I. H. (1966). A Dictionary of the Economic Plants of Malay Peninsula, p. 1818. Ministry of Agriculture and Cooperatives, Kuała Lumpur, Małaysia.
- Conserva, L. M., Da Silva, M. S. & Filho, R. B. (1990). Phytochemistry, 29, 257-260.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Nardelli, M. (1983a). Acta Cryst. C39, 1141-1142.
- Nardelli, M. (1983b). Comput. Chem. 7, 95-98.
- Saad, J. M., Soepadmo, E., Fang, X.-P., McLaughlin, J. L. & Fanwick, P. E. (1991). J. Nat. Prod. 54, 1681–1683.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1990). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1994). XSCANS User's Manual. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1996). C52, 416-418

Methyl 3-O-Benzoyl-4,6-O-benzylidene-2-Otrifluoromethylsulfonyl- α -D-mannopyranoside

JOHN C. BARNES, JOHN S. BRIMACOMBE AND ABUL K. M. S. KABIR

Department of Chemistry, University of Dundee, Dundee DD1 4HN, Scotland. E-mail: j.c.barnes@dundee.ac.uk

(Received 30 June 1995; accepted 4 September 1995)

Abstract

The title compound, $C_{22}H_{21}F_3O_9S$, is of interest as a potential precursor of 2-azido-2-deoxy-D-glucopyranose derivatives. The conformation of the molecule is as expected.

Comment

In connection with the synthesis of glycosyl-phosphatidylinositols (Cottaz, Brimacombe & Ferguson, 1993),